Smoothing splines for trend estimation and prediction in time series
نویسندگان
چکیده
We consider the use of generalized additive models with correlated errors for analysing trends in time series. The trend is represented as a smoothing spline so that it can be extrapolated. A method is proposed for choosing the smoothing parameter. It is based on the ability to predict a short term into the future. The choice not only addresses the purpose in hand, but also performs very well, and avoids the tendency to under-smooth or to interpolate the data that can occur with other data-driven methods used to choose the smoothing parameter. The method is applied to data from a chemical process and to stream salinity measurements. Copyright # 2008 John Wiley & Sons, Ltd.
منابع مشابه
Prediction of global sea cucumber capture production based on the exponential smoothing and ARIMA models
Sea cucumber catch has followed “boom-and-bust” patterns over the period of 60 years from 1950-2010, and sea cucumber fisheries have had important ecological, economic and societal roles. However, sea cucumber fisheries have not been explored systematically, especially in terms of catch change trends. Sea cucumbers are relatively sedentary species. An attempt was made to explore whether the tim...
متن کاملپیشبینی سری زمانی تعداد معلولیتهای مربوط به حوادث ناشی از کار برای بیمه شدگان تأمین اجتماعی بین سالهای 1379 تا 1389 در ایران با استفاده از روش تحلیل باکس جنکینز
Background : Controlling occurrence of accidents in work place has been an interesting subject in all countries worldwide. Financial consequences of these accidents and their economic losses imposed on the involved companies is only one of the insignificant aspects of such damages and when the non-economic but intangible losses to the society are taken into consideration ,these economic damag...
متن کاملTREND-CYCLE ESTIMATION USING FUZZY TRANSFORM OF HIGHER DEGREE
In this paper, we provide theoretical justification for the application of higher degree fuzzy transform in time series analysis. Under the assumption that a time series can be additively decomposed into a trend-cycle, a seasonal component and a random noise, we demonstrate that the higher degree fuzzy transform technique can be used for the estimation of the trend-cycle, which is one of the ba...
متن کاملPrediction of global sea cucumber capture production based on the exponential smoothing and ARIMA models
Sea cucumber catch has followed “boom-and-bust” patterns over the period of 60 years from 1950-2010, and sea cucumber fisheries have had important ecological, economic and societal roles. However, sea cucumber fisheries have not been explored systematically, especially in terms of catch change trends. Sea cucumbers are relatively sedentary species. An attempt was made to explore whe...
متن کاملSome New Methods for Prediction of Time Series by Wavelets
Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009